Higher-Order Functions

Announcements

Designing Functions

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

X 1is a number

A function's range is the set of output values it might

square returns a non-
possibly return.

negative real number

A pure function's behavior is the relationship it

square returns the
creates between input and output.

square of x

A Guide to Designing Function
Give each function exactly one job, but make it apply to many related situations
>>> round(1.23) >>> round(1.23, 1) >>> round(1.23, @
1 1.2 1

>>> round(1.23, 5)
1.23

Don’t repeat yourself (DRY). Implement a process just once, but execute it many times.

(Demo)

Generalization

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

Area:

Finding common structure allows for shared implementation

(Demo)

Higher-Order Functions

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

5

Sh=1+2+3+4+5 =15
k=1
S LE N R =225
> 8 8 8 8 8
: L A . —3.04
;‘ 3735 90" 105 T 323
(Demo)

Summation Example

[def cube(k): iFunct(iontof ?lscllng}e alnl'?ument}
; return pow(k, 3) not catled Tterm

def summation(n, [term be bound to a function

A formal parameter that will}

Sum the first n terms of a sequence.

_>>> summation(5, {cube)

225
AT [_?he cube function is passed }
total, k = 0, 1 as an argument value
while k <= n: S .
total, k = total +iterm(k), k + 1
return total AT

Q@ +1+8+27 + 64+ 125 The function bound to term
gets called here

Functions as Return Values

(Demo)

Locally Defined Functions

Functions defined within other function bodies are bound to names in a local frame

A function that

returns a function

def 'n)'a];'eiardcrlerr(n) :
"""Return a function that takes one argument k and returns k + n.

>>>iadd_three = make_adder(3)! The name add_three is bound
>>> Add three (2 - ’ to a function

def adder(k):

| A def statement within
. Eeturn another def statement
return adder

returnik + n

Can refer to names in the

enclosing function

Call Expressions as Operator Expressions

An expression that

An expression that

evaluates to a function evaluates to its argument

Operator Operand
3
i 3 F
{ make_adder(1) (2) J

{ func adder(k)
make_adder (1)
func make_adder(n) ‘ IIl} make_adder(n):

def adder(k): L .
R T e sssert

Lambda Expressions

(Demo)

Lambda Expressions

>>> x = 10 An expression: this one
evaluates to a number

>>> square = X * X

Also an expression:
evaluates to a function

>>> square ={ lambda x: X * X !
T _T Important: No "return" keyword!]
A function
with formal parameter x
that returns the value of 'ix '*:x‘”

>>> square(4)
16 [Must be a single expression]

Lambda expressions are not common in Python, but important in general

Lambda expressions in Python cannot contain statements at all!

Lambda Expressions Versus Def Statements

VS def square(x):

square = lambda Xx: X * X
return x x x

+ Both create a function with the same domain, range, and behavior.
+ Both bind that function to the name square.

*0Only the def statement gives the function an intrinsic name, which shows up in
environment diagrams but doesn't affect execution (unless the function is printed).

Gloval frame ——>func{A{x) <line 1> [parent=Global] Global frame ——>func square(x) [parent=Global]
iy e of
11X <line 1> i{parent=Global] The Greek fL: square [parent=Global
e letter lambda a4
x|a x
Ret |1 e (16

