
Composition

Announcements

Linked Lists

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

4

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

4

3 , 4 , 5

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

4

3 , 4 , 5

first: 3

rest:

Link instance

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

4

3 , 4 , 5

first: 3

rest:

Link instance

first: 4

rest:

Link instance

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

4

3 , 4 , 5

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

4

3 , 4 , 5

Link.empty

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

4

3 , 4 , 5

Link.empty

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance

A linked list
is a pair

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

4

3 , 4 , 5

Link.empty

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance

A linked list
is a pair

The first (zeroth)
element is an

attribute value

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

4

3 , 4 , 5

Link.empty

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance

A linked list
is a pair

The first (zeroth)
element is an

attribute value

The rest of the
elements are stored
in a linked list

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

4

3 , 4 , 5

Link.empty

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance

A linked list
is a pair

The first (zeroth)
element is an

attribute value

The rest of the
elements are stored
in a linked list

A class attribute represents
an empty linked list

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

4

3 , 4 , 5

Link.empty

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance

Link(3, Link(4, Link(5, Link.empty)))

A linked list
is a pair

The first (zeroth)
element is an

attribute value

The rest of the
elements are stored
in a linked list

A class attribute represents
an empty linked list

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

5

3 , 4 , 5

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance Link.empty

 , Link.empty)Link(3, Link(4, Link(5)))

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

5

3 , 4 , 5

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance Link.empty

 , Link.empty)Link(3, Link(4, Link(5)))

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

5

3 , 4 , 5

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance Link.empty

 , Link.empty)Link(3, Link(4, Link(5)))

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

5

3 , 4 , 5

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance Link.empty

 , Link.empty)Link(3, Link(4, Link(5)))

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

5

3 , 4 , 5

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance

 , Link.empty)Link(3, Link(4, Link(5)))

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

5

3 , 4 , 5

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance

Link(3, Link(4, Link(5)))

Linked List Class

6

Link(3, Link(4, Link(5)))

Linked List Class

6

Linked list class: attributes are passed to __init__

Link(3, Link(4, Link(5)))

Linked List Class

 class Link:

6

Linked list class: attributes are passed to __init__

Link(3, Link(4, Link(5)))

Linked List Class

 class Link:

6

Linked list class: attributes are passed to __init__

 def __init__(self, first, rest=empty):

Link(3, Link(4, Link(5)))

Linked List Class

 class Link:

6

Linked list class: attributes are passed to __init__

 def __init__(self, first, rest=empty):
 assert rest is Link.empty or isinstance(rest, Link)

Link(3, Link(4, Link(5)))

Linked List Class

 class Link:

6

Linked list class: attributes are passed to __init__

 def __init__(self, first, rest=empty):
 assert rest is Link.empty or isinstance(rest, Link)
 self.first = first
 self.rest = rest

Link(3, Link(4, Link(5)))

Linked List Class

 class Link:

6

Linked list class: attributes are passed to __init__

 def __init__(self, first, rest=empty):
 assert rest is Link.empty or isinstance(rest, Link)
 self.first = first
 self.rest = rest

Link(3, Link(4, Link(5)))

Returns whether
rest is a Link

Linked List Class

 class Link:

6

Linked list class: attributes are passed to __init__

 def __init__(self, first, rest=empty):
 assert rest is Link.empty or isinstance(rest, Link)
 self.first = first
 self.rest = rest

Link(3, Link(4, Link(5)))

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.

Linked List Class

 class Link:

 empty = ()

6

Linked list class: attributes are passed to __init__

 def __init__(self, first, rest=empty):
 assert rest is Link.empty or isinstance(rest, Link)
 self.first = first
 self.rest = rest

Link(3, Link(4, Link(5)))

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.

Linked List Class

 class Link:

 empty = ()

6

Some zero-length sequence

Linked list class: attributes are passed to __init__

 def __init__(self, first, rest=empty):
 assert rest is Link.empty or isinstance(rest, Link)
 self.first = first
 self.rest = rest

Link(3, Link(4, Link(5)))

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.

Linked List Class

 class Link:

 empty = ()

6

Some zero-length sequence

Linked list class: attributes are passed to __init__

 def __init__(self, first, rest=empty):
 assert rest is Link.empty or isinstance(rest, Link)
 self.first = first
 self.rest = rest

(Demo)

Link(3, Link(4, Link(5)))

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.

Property Methods

Property Methods

In some cases, we want the value of instance attributes to be computed on demand

8

For example, if we want to access the second element of a linked list

Property Methods

In some cases, we want the value of instance attributes to be computed on demand

>>> s = Link(3, Link(4, Link(5)))

8

For example, if we want to access the second element of a linked list

Property Methods

In some cases, we want the value of instance attributes to be computed on demand

>>> s = Link(3, Link(4, Link(5)))
>>> s.second
4

8

For example, if we want to access the second element of a linked list

Property Methods

In some cases, we want the value of instance attributes to be computed on demand

>>> s = Link(3, Link(4, Link(5)))
>>> s.second
4
>>> s.second = 6

8

For example, if we want to access the second element of a linked list

Property Methods

In some cases, we want the value of instance attributes to be computed on demand

>>> s = Link(3, Link(4, Link(5)))
>>> s.second
4
>>> s.second = 6
>>> s.second
6

8

For example, if we want to access the second element of a linked list

Property Methods

In some cases, we want the value of instance attributes to be computed on demand

>>> s = Link(3, Link(4, Link(5)))
>>> s.second
4
>>> s.second = 6
>>> s.second
6
>>> s
Link(3, Link(6, Link(5)))

8

For example, if we want to access the second element of a linked list

Property Methods

In some cases, we want the value of instance attributes to be computed on demand

>>> s = Link(3, Link(4, Link(5)))
>>> s.second
4
>>> s.second = 6
>>> s.second
6
>>> s
Link(3, Link(6, Link(5)))

8

No method
calls!

For example, if we want to access the second element of a linked list

Property Methods

In some cases, we want the value of instance attributes to be computed on demand

>>> s = Link(3, Link(4, Link(5)))
>>> s.second
4
>>> s.second = 6
>>> s.second
6
>>> s
Link(3, Link(6, Link(5)))

The @property decorator on a method designates that it will be called whenever it is
looked up on an instance

8

No method
calls!

For example, if we want to access the second element of a linked list

Property Methods

In some cases, we want the value of instance attributes to be computed on demand

>>> s = Link(3, Link(4, Link(5)))
>>> s.second
4
>>> s.second = 6
>>> s.second
6
>>> s
Link(3, Link(6, Link(5)))

The @property decorator on a method designates that it will be called whenever it is
looked up on an instance

A @<attribute>.setter decorator on a method designates that it will be called whenever
that attribute is assigned. <attribute> must be an existing property method.

8

No method
calls!

For example, if we want to access the second element of a linked list

Property Methods

In some cases, we want the value of instance attributes to be computed on demand

>>> s = Link(3, Link(4, Link(5)))
>>> s.second
4
>>> s.second = 6
>>> s.second
6
>>> s
Link(3, Link(6, Link(5)))

The @property decorator on a method designates that it will be called whenever it is
looked up on an instance

(Demo)

A @<attribute>.setter decorator on a method designates that it will be called whenever
that attribute is assigned. <attribute> must be an existing property method.

8

No method
calls!

For example, if we want to access the second element of a linked list

Tree Class

Tree Abstraction (Review)

10

2

3

1

0 1 1 1

0 1

Tree Abstraction (Review)

10

Recursive description (wooden trees):

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Tree Abstraction (Review)

10

Recursive description (wooden trees):

A tree has a root label and a list of branches

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Tree Abstraction (Review)

10

Recursive description (wooden trees):

A tree has a root label and a list of branches

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Root label

Tree Abstraction (Review)

10

Recursive description (wooden trees):

A tree has a root label and a list of branches

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Root label

Branch

Tree Abstraction (Review)

10

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Root label

Branch

Tree Abstraction (Review)

10

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Root label

Branch
(also a tree)

Tree Abstraction (Review)

10

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Root label

Branch
(also a tree)

Tree Abstraction (Review)

10

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Tree Abstraction (Review)

10

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Tree Abstraction (Review)

10

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Root of the whole tree

Tree Abstraction (Review)

10

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Root of the whole tree

Root of a branch

Tree Abstraction (Review)

10

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Nodes
Root of the whole tree

Root of a branch

Tree Abstraction (Review)

10

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a label that can be any value

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Nodes
Root of the whole tree

Root of a branch

Tree Abstraction (Review)

10

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a label that can be any value

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Labels

Nodes
Root of the whole tree

Root of a branch

Tree Abstraction (Review)

10

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a label that can be any value

One node can be the parent/child of another

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Labels

Nodes
Root of the whole tree

Root of a branch

Tree Abstraction (Review)

10

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a label that can be any value

One node can be the parent/child of another

The top node is the root node

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Labels

Nodes
Root of the whole tree

Root of a branch

Tree Abstraction (Review)

10

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a label that can be any value

One node can be the parent/child of another

The top node is the root node

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Labels

Nodes
Root of the whole tree

Root of a branch

 or Root Node

Tree Abstraction (Review)

10

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a label that can be any value

One node can be the parent/child of another

The top node is the root node

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Labels

Nodes

People often refer to labels by their locations: "each parent is the sum of its children"

Root of the whole tree

Root of a branch

 or Root Node

Tree Abstraction (Review)

10

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a label that can be any value

One node can be the parent/child of another

The top node is the root node

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Labels

Nodes

People often refer to labels by their locations: "each parent is the sum of its children"

Root of the whole tree

Root of a branch

Path

 or Root Node

Tree Class

11

A Tree has a label and a list of branches; each branch is a Tree

Tree Class

class Tree:

11

A Tree has a label and a list of branches; each branch is a Tree

Tree Class

class Tree:
 def __init__(self, label, branches=[]):

11

A Tree has a label and a list of branches; each branch is a Tree

Tree Class

class Tree:
 def __init__(self, label, branches=[]):
 self.label = label

11

A Tree has a label and a list of branches; each branch is a Tree

Tree Class

class Tree:
 def __init__(self, label, branches=[]):
 self.label = label
 for branch in branches:
 assert isinstance(branch, Tree)

11

A Tree has a label and a list of branches; each branch is a Tree

Tree Class

class Tree:
 def __init__(self, label, branches=[]):
 self.label = label
 for branch in branches:
 assert isinstance(branch, Tree)
 self.branches = list(branches)

11

A Tree has a label and a list of branches; each branch is a Tree

Tree Class

class Tree:
 def __init__(self, label, branches=[]):
 self.label = label
 for branch in branches:
 assert isinstance(branch, Tree)
 self.branches = list(branches)

11

A Tree has a label and a list of branches; each branch is a Tree

 for branch in branches:
 assert is_tree(branch)
 return [label] + list(branches)
def label(tree):
 return tree[0]
def branches(tree):
 return tree[1:]

def tree(label, branches=[]):

Tree Class

class Tree:
 def __init__(self, label, branches=[]):
 self.label = label
 for branch in branches:
 assert isinstance(branch, Tree)
 self.branches = list(branches)

def fib_tree(n):
 if n == 0 or n == 1:
 return Tree(n)
 else:
 left = fib_tree(n-2)
 right = fib_tree(n-1)
 fib_n = left.label + right.label
 return Tree(fib_n, [left, right])

11

A Tree has a label and a list of branches; each branch is a Tree

 for branch in branches:
 assert is_tree(branch)
 return [label] + list(branches)
def label(tree):
 return tree[0]
def branches(tree):
 return tree[1:]

def tree(label, branches=[]):

Tree Class

class Tree:
 def __init__(self, label, branches=[]):
 self.label = label
 for branch in branches:
 assert isinstance(branch, Tree)
 self.branches = list(branches)

def fib_tree(n):
 if n == 0 or n == 1:
 return Tree(n)
 else:
 left = fib_tree(n-2)
 right = fib_tree(n-1)
 fib_n = left.label + right.label
 return Tree(fib_n, [left, right])

11

A Tree has a label and a list of branches; each branch is a Tree

 for branch in branches:
 assert is_tree(branch)
 return [label] + list(branches)
def label(tree):
 return tree[0]
def branches(tree):
 return tree[1:]

def tree(label, branches=[]):

def fib_tree(n):
 if n == 0 or n == 1:
 return tree(n)
 else:
 left = fib_tree(n-2)
 right = fib_tree(n-1)
 fib_n = label(left) + label(right)
 return tree(fib_n, [left, right])

Tree Class

class Tree:
 def __init__(self, label, branches=[]):
 self.label = label
 for branch in branches:
 assert isinstance(branch, Tree)
 self.branches = list(branches)

def fib_tree(n):
 if n == 0 or n == 1:
 return Tree(n)
 else:
 left = fib_tree(n-2)
 right = fib_tree(n-1)
 fib_n = left.label + right.label
 return Tree(fib_n, [left, right])

(Demo)
11

A Tree has a label and a list of branches; each branch is a Tree

 for branch in branches:
 assert is_tree(branch)
 return [label] + list(branches)
def label(tree):
 return tree[0]
def branches(tree):
 return tree[1:]

def tree(label, branches=[]):

def fib_tree(n):
 if n == 0 or n == 1:
 return tree(n)
 else:
 left = fib_tree(n-2)
 right = fib_tree(n-1)
 fib_n = label(left) + label(right)
 return tree(fib_n, [left, right])

