Composition

Announcements

Linked Lists

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

Link instance

first: 3

rest: .—/

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

Link instance Link instance

first: 3 first: 4

rest: .—/ rest: .—/

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

Link instance Link instance Link instance

first: 3 first: 4 first: 5

rest: .—/ rest: .—/ rest: .—/

Linked List Structure

Link instance

first:

3

Link instance

rest:

first:

4

Link instance

o=

rest:

first:

5

A linked list is either empty or a first value and the rest of the linked list

Link.empty

o—

rest:

o=

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

A linked list]

is a pair 3,4,5
{“Liﬁk"iﬁgigﬁgé ---------- f Link instance Link instance Link.empty
first: | first: 4 first: 5
rest Oo— rest: C—= rest: Oo—=

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

A linked list]

is a pair 3,4,5
{“Liﬁk"iﬁgigﬁgé ---------- } Link instance Link instance Link.empty
first: @ 3 | || first: 4 first: 5

rest: A .—/ rest: .—/ rest: .—/

The first (zeroth)
element 1is an
attribute value

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

A linked list]

is a pair 3,4,5
" Link instance } | Link instance | Link instance Link.empty
first: @ 3 é ; first: 4 first: 5

The first (zeroth)
element 1is an
attribute value

The rest of the
elements are stored
in a linked list

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

A linked list A class attribute represents
is a pair 3,4,5 an empty linked list
S, e msmecesEssssscseESesscomEmesnsacsEessnsss . ST T A '._'.'.'.'.'.'.'.'.'.'.v.'.'.'.'.'.'.'.'.'.'.'.':~ """"""""""
. Link instance i i Link instance Link instance i Link.empty:
first: @ 3 é ; first: 4 first: 5

The first (zeroth)
element 1is an
attribute value

The rest of the
elements are stored
in a linked list

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

A linked list A class attribute represents
is a pair 3,4,5 an empty linked list
S, e msmecesEssssscseESesscomEmesnsacsEessnsss . ST T A '._'.'.'.'.'.'.'.'.'.'.v.'.'.'.'.'.'.'.'.'.'.'.':~ """"""""""
. Link instance i i Link instance Link instance i Link.empty:
first: @ 3 é ; first: 4 first: 5

The first (zeroth)
element 1is an
attribute value

The rest of the
elements are stored
in a linked list

Link(3, Link(4, Link(5, Link.empty)))

Linked List Structure

Link instance

first:

3

Link instance

rest:

first:

4

Link instance

o—

rest:

first:

5

A linked list is either empty or a first value and the rest of the linked list

Link.empty

o—

rest:

[—

Link(3, Link(4, Link(5, Link.empty)))

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

Link instance Link instance Link instance Link.empty

first: 3 first: 4 first: 5

rest: o—/ rest: o—/ rest: o—/

Link(3, Link(4, Link(5, Link.empty)))

Linked List Structure

Link instance Link instance Link instance Link.empty
4 5

Link(3, Link(4, Link(5, Link.empty)))

3

—L "

Linked List Structure

3,4,5
Link instance Link instance Link instance Link.empty
3 4 5

Link(3, Link(4, Link(5, Link.empty)))

Linked List Structure

Link instance Link instance Link instance

3

—L "

4 5

"

Link(3, Link(4, Link(5, Link.empty)))

Linked List Structure

Link instance Link instance Link instance

3

—L "

4 5

"

Link(3, Link(4, Link(5)))

Linked List Class

Link(3, Link(4, Link(5)))

Linked List Class

Linked list class: attributes are passed to __init__

Link(3, Link(4, Link(5

)))

Linked List Class

Linked list class: attributes are passed to __init__

class Link:

Link(3, Link(4, Link(5

)))

Linked List Class

Linked list class: attributes are passed to __init__

class Link:

def __init_ (self, first, rest=empty):

Link(3, Link(4, Link(5

)))

Linked List Class

Linked list class: attributes are passed to __init__

class Link:

def __init__ (self, first, rest=empty):
assert rest is Link.empty or isinstance(rest, Link)

Link(3, Link(4, Link(5

)))

Linked List Class

Linked list class: attributes are passed to __init__

class Link:

def __init__ (self, first, rest=empty):
assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest

Link(3, Link(4, Link(5

)))

Linked List Class

Linked list class: attributes are passed to __init__

class Link:

def __init_ (self, first, rest=empty)i .
assert rest is Link. empty or 151nstance(rest Llnk)
self.first = first ~ “opoe s
self.rest = rest J

Returns whether
rest is a Link

Link(3, Link(4, Link(5)))

Linked List Class

Linked list class: attributes are passed to __init__

class Link:

def __init_ (self, first, rest=empty)i .
assert rest is Link. empty or 151nstance(rest Llnk)
self.first = first ~ “opoe s
self.rest = rest J

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.

Link(3, Link(4, Link(5)))

Linked List Class

Linked list class: attributes are passed to __init__

class Link:
empty = ()

def __init_ (self, first, rest=empty)i .
assert rest is Link. empty or 151nstance(rest Llnk)
self.first = first ~ “opoe s
self.rest = rest J

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.

Link(3, Link(4, Link(5)))

Linked List Class

Linked list class: attributes are passed to __init__

class Link:

empty =i()

P ‘<[Some zero-length sequence :]

def __init_ (self, first, rest=empty)i .
assert rest is Link. empty or 151nstance(rest Llnk)
self.first = first ~ “opoe s
self.rest = rest J

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.

Link(3, Link(4, Link(5)))

Linked List Class

Linked list class: attributes are passed to __init__

class Link:

empty =i()

P ‘<[Some zero-length sequence :]

def __init_ (self, first, rest=empty)i .
assert rest is Link. empty or 151nstance(rest Llnk)
self.first = first ~ “opoe s
self.rest = rest J

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.
Link(3, Link(4, Link(5)))

(Demo)

Property Methods

Property Methods

In some cases, we want the value of instance attributes to be computed on demand

For example, if we want to access the second element of a linked list

Property Methods

In some cases, we want the value of instance attributes to be computed on demand

For example, if we want to access the second element of a linked list

>>> s = Link(3, Link(4, Link(5)))

Property Methods

In some cases, we want the value of instance attributes to be computed on demand

For example, if we want to access the second element of a linked list

>>> s = Link(3, Link(4, Link(5)))
>>> s,second
4

Property Methods

In some cases, we want the value of instance attributes to be computed on demand

For example, if we want to access the second element of a linked list

>>> s = Link(3, Link(4, Link(5)))
>>> s,second
4

>>> s,second = 6

Property Methods

In some cases, we want the value of instance attributes to be computed on demand

For example, if we want to access the second element of a linked list

>>>
>>>
4

>>>
>>>

= Link(3, Link(4, Link(5)))
. second

n n

.second = 6
. second

n n

Property Methods

In some cases, we want the value of instance attributes to be computed on demand

For example, if we want to access the second element of a linked list

>>> s = Link(3, Link(4, Link(5)))
>>> s,second

4

>>> s.second = 6

>>> s,second

6

>>> g

Link(3, Link(6, Link(5)))

Property Methods

In some cases, we want the value of instance attributes to be computed on demand

For example, if we want to access the second element of a linked list

>>> s = Link(3, Link(4, Link(5)))
>>> s.second

4
>>>/s.second = 6

>>>1is,second i 7] No method
6 T <<[calls! J
>>> g

Link(3, Link(6, Link(5)))

Property Methods

In some cases, we want the value of instance attributes to be computed on demand

For example, if we want to access the second element of a linked list

>>> s = Link(3, Link(4, Link(5)))
>>> s.second

4

>>>/s.second = 6

>>>1is,second i 7] No method
6 T <<[calls! J
>>> g

Link(3, Link(6, Link(5)))

The @property decorator on a method designates that it will be called whenever it is
looked up on an instance

Property Methods

In some cases, we want the value of instance attributes to be computed on demand

For example, if we want to access the second element of a linked list

>>> s = Link(3, Link(4, Link(5)))
>>> s,second

4

>>>/s.second = 6

>>>1is,second i 7] No method
G e '<<[calls! J
>>> S

Link(3, Link(6, Link(5)))

The @property decorator on a method designates that it will be called whenever it is
looked up on an instance

A @E<attribute>.setter decorator on a method designates that it will be called whenever
that attribute is assigned. <attribute> must be an existing property method.

Property Methods

In some cases, we want the value of instance attributes to be computed on demand

For example, if we want to access the second element of a linked list

>>> s = Link(3, Link(4, Link(5)))
>>> s,second

4

>>>/s.second = 6

>>>1is,second i 7] No method
G e '<<[calls! J
>>> S

Link(3, Link(6, Link(5)))

The @property decorator on a method designates that it will be called whenever it is
looked up on an instance

A @E<attribute>.setter decorator on a method designates that it will be called whenever
that attribute is assigned. <attribute> must be an existing property method.

(Demo)

Tree Class

Tree Abstraction (Review)

o,

Tree Abstraction (Review)

3)
oS @

Recursive description (wooden trees): Relative description (family trees):

Tree Abstraction (Review)

3)
o @

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches

Tree Abstraction (Review)

Root label
Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches

Tree Abstraction (Review)

Root label 4@

Branch—bé

OO

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches

Tree Abstraction (Review)

Root label 4@

Branch—bé

OO

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches

Each branch is a tree

Tree Abstraction (Review)

Root label 4@

Branch—bé
(also a tree)

OO

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches

Each branch is a tree

Tree Abstraction (Review)

Root label 4@

Branch—bé
(also a tree)

__________________________________ OO

Recursive description (wooden trees): Relative description (family trees):
A tree has a root label and a list of branches

Each branch is a tree
A tree with zero branches is called a leaf

Tree Abstraction (Review)

Root label 4@

Branch—bé

(also a tree) ! N
| (also a tree)é @

'

'

'

.
.

Recursive description (wooden trees): Relative description (family trees):
A tree has a root label and a list of branches

Each branch is a tree
A tree with zero branches is called a leaf

Tree Abstraction (Review)

Root label 4@

Branch—bé

(also a tree) ! N
(also a tree)é @

Recursive description (wooden trees): Relative description (family trees):
A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

Tree Abstraction (Review)
Root of the whole tree

Root label 4@

Branch—bé

(also a tree) ! N
(also a tree)é @

Recursive description (wooden trees): Relative description (family trees):
A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

Tree Abstraction (Review)
Root of the whole tree

Root label 4@

Branch—bé
(also a tree)

Root of a branch

OO

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches

'
'
'
.
.

Each branch is a tree
A tree with zero branches is called a leaf

A tree starts at the root

Tree Abstraction (Review)
Root of the whole tree

\\ﬁ‘ — Nodes
Root label <
Root of a branch
Branch—bé
(also a tree) ! \ g
:j ; \<v
Recursive description (wooden trees): Relative description (family trees):
A tree has a root label and a list of branches Each location in a tree is called a node

Each branch is a tree
A tree with zero branches is called a leaf

A tree starts at the root

Tree Abstraction (Review)
Root of the whole tree

\\ﬁ‘ — Nodes
Root label <
Root of a branch
Branch—bé
(also a tree) ! \ g ;
©

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches Each location in a tree is called a node
Each branch is a tree Each node has a label that can be any value

A tree with zero branches is called a leaf

A tree starts at the root

Tree Abstraction (Review)
Root of the whole tree

Root label 4@ . e 4 .

Branch—bé
(also a tree)

Root of a branch

'
'
'
.
.

Recursive description (wooden trees): Relative description (family trees):
A tree has a root label and a list of branches Each location in a tree is called a node
Each branch is a tree Each node has a label that can be any value

A tree with zero branches is called a leaf

A tree starts at the root

Tree Abstraction (Review)
Root of the whole tree

Root label 4@ . e 4 .

Branch—bé
(also a tree)

Root of a branch

'
'
'
.
.

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches Each location in a tree is called a node
Each branch is a tree Each node has a label that can be any value
A tree with zero branches is called a leaf One node can be the parent/child of another

A tree starts at the root

Tree Abstraction (Review)
Root of the whole tree

Root label 4@ . o 4 .

Branch—bé
(also a tree)

Root of a branch

'
'
'
.
.

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches Each location in a tree is called a node
Each branch is a tree Each node has a label that can be any value
A tree with zero branches is called a leaf One node can be the parent/child of another

A tree starts at the root The top node is the root node

Tree Abstraction (Review)
Root of the whole tree or Root Node

Root label 4@ . o 4 .

Branch—bé
(also a tree)

Root of a branch

'
'
'
.
.

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches Each location in a tree is called a node
Each branch is a tree Each node has a label that can be any value
A tree with zero branches is called a leaf One node can be the parent/child of another

A tree starts at the root The top node is the root node

Tree Abstraction (Review)

or Root Node

(wooden trees): Relative description (family trees):

A tree has a root label and a list of branches Each location in a tree is called a node

Each branch is a tree Each node has a label that can be any value
A tree with zero branches is called a leaf One node can be the parent/child of another
A tree starts at the root The top node is the root node

People often refer to labels by their locations: "“each parent is the sum of its children"

Tree Abstraction (Review)
Root of the whole tree or Root Node

Root label 4@ . o 4 .

Branch—bé
(also a tree)

Root of a branch

'
'
'
.
.

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches Each location in a tree is called a node

Each branch is a tree Each node has a label that can be any value
A tree with zero branches is called a leaf One node can be the parent/child of another
A tree starts at the root The top node is the root node

People often refer to labels by their locations: "each parent is the sum of its children"

Tree Class

A Tree has a label and a list of branches; each branch is a Tree

Tree Class

A Tree has a label and a list of branches; each branch is a Tree

class Tree:

Tree Class

A Tree has a label and a list of branches; each branch is a Tree

class Tree:
def init (self, label, branches=[]):

Tree Class

A Tree has a label and a list of branches; each branch is a Tree

class Tree:
def init (self, label, branches=[]):
self.label = label

Tree Class

A Tree has a label and a list of branches; each branch is a Tree

class Tree:
def init (self, label, branches=[]):
self.label = label
for branch in branches:
assert isinstance(branch, Tree)

Tree Class

A Tree has a label and a list of branches; each branch is a Tree

class Tree:
def init (self, label, branches=[]):
self.label = label
for branch in branches:
assert isinstance(branch, Tree)
self.branches = list(branches)

Tree Class

A Tree has a label and a list of branches; each branch is a Tree

class Tree:

def init (self, label, branches=[]):
self.label = label

def tree(label, branches=[]):
for branch in branches:

for branch in branches: assert is_tree(branch)
assert isinstance(éranch, Tree) return [label] + list(branches)
self.branches = list(branches) def label(tree):

return treel[0]
def branches(tree):
return treel[1:]

Tree Class

A Tree has a label and a list of branches; each branch is a Tree

class Tree:
def init (self, label, branches=[]):
self.label = label
for branch in branches:
assert isinstance(branch, Tree)
self.branches = list(branches)

def fib_tree(n):

if n==0 or n ==
return Tree(n)

else:
left = fib_tree(n-2)
right = fib_tree(n-1)
fib_n = left.label + right.label
return Tree(fib_n, [left, right])

def tree(label, branches=[]):
for branch in branches:
assert is_tree(branch)

return [label] + list(branches)
def label(tree):

return treel[0]
def branches(tree):
return treel[1:]

Tree Class

A Tree has a label and a list of branches; each

class Tree:

def init (self, label, branches=[]):

self.label = label
for branch in branches:

assert isinstance(branch, Tree)

self.branches = list(branches)

def fib_tree(n):

if n==0 or n ==
return Tree(n)

else:
left = fib_tree(n-2)
right = fib_tree(n-1)
fib_n = left.label + right.label
return Tree(fib_n, [left, right])

branch is a Tree

def tree(label, branches=[]):
for branch in branches:
assert is_tree(branch)
return [label]l + list(branches)
def label(tree):
return treel0]
def branches(tree):
return tree[1:]
def fib_tree(n):
if n ==0 or n ==
return tree(n)
else:
left = fib_tree(n-2)
right = fib_tree(n-1)
fib_n = label(left) + label(right)
return tree(fib_n, [left, right])

Tree Class

A Tree has a label and a list of branches; each

class Tree:

def init (self, label, branches=[]):

self.label = label
for branch in branches:

assert isinstance(branch, Tree)

self.branches = list(branches)

def fib_tree(n):

if n==0 or n ==
return Tree(n)
else:
left = fib_tree(n-2)
right = fib_tree(n-1)
fib_n = left.label + right.label

return Tree(fib_n, [left, right])

(Demo)

branch is a Tree

def tree(label, branches=[]):
for branch in branches:
assert is_tree(branch)
return [label]l + list(branches)
label(tree):
return treel0]
branches(tree):
return tree[1:]
fib tree(n):
if n O or n
return tree(n)

else:
left =

def
def

def

fib_tree(n-2)
right = fib_tree(n-1)
fib_n = label(left) + label(right)
return tree(fib_n, [left, right])

