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branch is a Tree

def tree(label, branches=[]):
for branch in branches:
assert is_tree(branch)
return [label]l + list(branches)
label(tree):
return treel0]
branches(tree):
return tree[1:]
fib tree(n):
if n O or n
return tree(n)

else:
left =

def
def

def

fib_tree(n-2)
right = fib_tree(n-1)
fib_n = label(left) + label(right)
return tree(fib_n, [left, right])



