
CS 61A Lists, Recursion, Tree Recursion
Spring 2020 Guerrilla Section 1: February 22, 2020

1 Lists, Recursion, Tree Recursion
Questions

1.1 What would Python display?

lst = [1, 2, 3, 4, 5]

lst[1:3]

lst[0:len(lst)]

lst[-4:]

lst[3:]

lst[1:4:2]

lst[:4:2]

lst[1::2]

lst[::-1]

lst + 100

lst3 = [[1], [2], [3]]

lst + lst3

2 Lists, Recursion, Tree Recursion

1.2 Draw the environment diagram that results from running the code below

def reverse(lst):

if len(lst) <= 1:

return lst

return reverse(lst[1:]) + [lst[0]]

lst = [1, [2, 3], 4]

rev = reverse(lst)

1.3 Implement a function map mut that takes a list as an argument and maps a function

f onto each element of the list. You should mutate the original lists, without creating

any new lists. Do NOT return anything.

def map_mut(f, L):

>>> L = [1, 2, 3, 4]

>>> map_mut(lambda x: x**2, L)

>>> L

[1, 4, 9, 16]

1.4 Check your understanding

1 When copying the list, when are you copying a pointer of the list vs. copying

the actual value inside of a list?

2 How would you make a deep copy of a list?

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Lists, Recursion, Tree Recursion 3

1.5 What are three things you find in every recursive function?

1.6 When you write a Recursive function, you seem to call it before it has been fully

defined. Why doesn’t this break the Python interpreter?

1.7 Below is a Python function that computes the nth Fibonacci number. Identify the

three things it contains as a recursive function (from 1.1).

def fib(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return fib(n-1) + fib(n-2)

1.8 With the definition of the Fibonacci function above, draw out a diagram of the

recursive calls made when fib(4) is called.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Lists, Recursion, Tree Recursion

1.9 What does the following function cascade2 do? What is its domain and range?

def cascade2(n):

print(n)

if n >= 10:

cascade2(n//10)

print(n)

1.10 Consider an insect in an M by N grid. The insect starts at the bottom left corner,

(0, 0), and wants to end up at the top right corner (M-1, N-1). The insect is only

capable of moving right or up. Write a function paths that takes a grid length and

width and returns the number of different paths the insect can take from the start

to the goal. (There is a closed-form solution to this problem, but try to answer it

procedurally using recursion.)

def paths(m, n):

"""

>>> paths(2, 2)

2

>>> paths(117, 1)

1

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Lists, Recursion, Tree Recursion 5

1.11 Write a procedure merge(s1, s2) which takes two sorted (smallest value first) lists

and returns a single list with all of the elements of the two lists, in ascending order.

Use recursion.

Hint: If you can figure out which list has the smallest element out of both, then we

know that the resulting merged list will have that smallest element, followed by the

merge of the two lists with the smallest item removed. Don’t forget to handle the

case where one list is empty!

def merge(s1, s2):

""" Merges two sorted lists

>>> merge([1, 3], [2, 4])

[1, 2, 3, 4]

>>> merge([1, 2], [])

[1, 2]

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Lists, Recursion, Tree Recursion

1.12 Mario needs to jump over a sequence of Piranha plants, represented as a string of

dashes (no plant) and P’s (plant!). He only moves forward, and he can either step

(move forward one place) or jump (move forward two places) from each position.

How many different ways can Mario traverse a level without stepping or jumping

into a Piranha plant? Assume that every level begins with a dash (where Mario

starts) and ends with a dash (where Mario must end up):

Hint: You can get the ith character in a string s by using s[i]. For example,

>>> s = 'abcdefg'

>>> s[0]

'a'

>>> s[2]

'c'

You can find the total number of characters in a string with the built-in len function:

>>> s = 'abcdefg'

>>> len(s)

7

>>> len('')

0

def mario_number(level):

"""Return the number of ways that Mario can perform a sequence of steps

or jumps to reach the end of the level without ever landing in a Piranha

plant. Assume that every level begins and ends with a dash.

>>> mario_number('-P-P-') # jump, jump

1

>>> mario_number('-P-P--') # jump, jump, step

1

>>> mario_number('--P-P-') # step, jump, jump

1

>>> mario_number('---P-P-') # step, step, jump, jump or jump, jump, jump

2

>>> mario_number('-P-PP-') # Mario cannot jump two plants

0

>>> mario_number('----') # step, jump ; jump, step ; step, step, step

3

>>> mario_number('----P----')

9

>>> mario_number('---P----P-P---P--P-P----P-----P-')

180

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Lists, Recursion, Tree Recursion

