
CS 61A Mutability, ADTs,Trees,
Iterators/Generators
Spring 2020 Guerrilla Section 2: March 6, 2020

1 Mutability
Questions

1.1 Name two data types that are mutable. What does it mean to be mutable?

1.2 Name at least two data types at are not mutable.

1.3 Will the following code error? If so, why?

a = 1

b = 2

dt = {a: 1, b: 2}

a = [1]

b = [2]

dt = {a: 1, b: 2}

1.4 Fill in the output and draw a box-and-pointer diagram for the following code. If

an error occurs, write “Error”, but include all output displayed before the error.

a = [1, [2, 3], 4]

c = a[1]

c

a.append(c)

a

c[0] = 0

c

a

a.extend(c)

c[1] = 9

a

list1 = [1, 2, 3]

list2 = [1, 2, 3]



2 Mutability, ADTs,Trees, Iterators/Generators

list1 == list2

list1 is list2

1.5 Check your understanding:

1 What is the difference between the append function, extend function, and the

’+’ operator?

2 Given the below code, answer the following questions: a = [1, 2, [3, 4], 5]

b = a[:]

b[1] = 6

b[2][0] = 7

What does b evaluate to?

What does a evaluate to? Are a and b the same? Please explain your reasoning.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Mutability, ADTs,Trees, Iterators/Generators 3

2 Data Abstraction
Questions

2.1 What are the two types of functions necessary to make an Abstract Data Type?

What do they do?

2.2 Assume that rational, numer, denom, and gcd run without error and behave as

described below. Can you identify where the abstraction barrier is broken? Come

up with a scenario where this code runs without error and a scenario where this

code would stop working.

def rational(num, den): # Returns a rational number ADT

#implementation not shown

def numer(x): # Returns the numerator of the given rational

#implementation not shown

def denom(x): # Returns the denominator of the given rational

#implementation not shown

def gcd(a, b): # Returns the GCD of two numbers

#implementation not shown

def simplify(f1): #Simplifies a rational number

g = gcd(f1[0], f1[1])

return rational(numer(f1) // g, denom(f1) // g)

def multiply(f1, f2): # Multiples and simplifies two rational numbers

r = rational(numer(f1) * numer(f2), denom(f1) * denom(f2))

return simplify(r)

x = rational(1, 2)

y = rational(2, 3)

multiply(x, y)

2.3 Check your understanding

1 How do we know what we are breaking an abstraction barrier?

2 What are the benefits to Data Abstraction?

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



4 Mutability, ADTs,Trees, Iterators/Generators

3 Trees
Questions

3.1 Fill in this implementation of the Tree ADT.

def tree(label, branches = []):

for b in branches:

assert is_tree(b), 'branches must be trees'

return [label] + list(branches)

def is_tree(tree):

if type(tree) != list or len(tree) < 1:

return False

for b in branches(tree):

if not is_tree(b):

return False

return True

def label(tree):

def branches(tree):

def is_leaf(tree):

3.2 A min-heap is a tree with the special property that every node’s value is less than

or equal to the values of all of its children. For example, the following tree is a

min-heap:

1

/ | \

5 3 6

| / \

7 9 4

However, the following tree is not a min-heap because the node with value 3 has a

value greater than one of its children:

1

/ | \

5 3 6

| / \

7 9 2

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Mutability, ADTs,Trees, Iterators/Generators 5

Write a function is min heap that takes a tree and returns True if the tree is a

min-heap and False otherwise.

def is_min_heap(t):

3.3 Write a function largest product path that finds the largest product path pos-

sible. A product path is defined as the product of all nodes between the root

and a leaf. The function takes a tree as its parameter. Assume all nodes have a

non-negative value.

3

/ | \

7 8 4

| |

2 1

For example, calling largest product path on the above tree would return 42,

since 3 * 7 * 2 is the largest product path.

def largest_product_path(tree):

"""

>>> largest_product_path(None)

0

>>> largest_product_path(tree(3))

3

>>> t = tree(3, [tree(7, [tree(2)]), tree(8, [tree(1)]), tree(4)])

>>> largest_product_path(t)

42

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



6 Mutability, ADTs,Trees, Iterators/Generators

3.4 Implement a function max tree, which takes a tree t. It returns a new tree with

the exact same structure as t; at each node in the new tree, the entry is the largest

number that is contained in that node’s subtrees or the corresponding node in t.

def max_tree(t):

>>> max_tree(tree(1, [tree(5, [tree(7)]),tree(3,[tree(9),tree(4)]),tree(6)]))

tree(9, [tree(7, [tree(7)]),tree(9,[tree(9),tree(4)]),tree(6)])

if ___________:

return _________________

else:

new_branches= ______________________________

new_label = __________________________________

return ______________________

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Mutability, ADTs,Trees, Iterators/Generators 7

3.5 Challenge Question: The level-order traversal of a tree is defined as visiting the

nodes in each level of a tree before moving onto the nodes in the next level. For

example, the level order of the following tree is: 3 7 8 4

3

/ | \

7 8 4

Write a function level order that takes in a tree as the parameter and returns a

list of the values of the nodes in level order.

def level_order(tree):

3.6 Challenge Question: Write a function all paths which will return a list of lists of

all the possible paths of an input tree, t. When the function is called on the same

tree as the problem above, the function would return: [[3, 7], [3, 8], [3, 4]]

def all_paths(t):

if _______________:

____________________

else:

___________________

____________________

________________________

______________________

__________________

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



8 Mutability, ADTs,Trees, Iterators/Generators

4 Nonlocal
Questions

4.1 Draw an environment diagram for the following code:

spiderman = 'peter parker'

def spider(man):

def myster(io):

nonlocal man

man = spiderman

spider = lambda stark: stark(man) + ' ' + io

return spider

return myster

truth = spider('quentin is')('the greatest superhero')(lambda x: x)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Mutability, ADTs,Trees, Iterators/Generators 9

4.2 Draw an environment diagram for the following code:

fa = 0

def fi(fa):

def world(cup):

nonlocal fa

fa = lambda fi: world or fa or fi

world = 0

if (not cup) or fa:

fa(2022)

fa, cup = world + 2, fa

return cup(fa)

return fa(cup)

return world

won = lambda opponent, x: opponent(x)

us = won(fi(fa), 2019)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



10 Mutability, ADTs,Trees, Iterators/Generators

4.3 Write make max finder, which takes in no arguments but returns a function which

takes in a list. The function it returns should return the maximum value it’s been

called on so far, including the current list and any previous list. You can assume

that any list this function takes in will be nonempty and contain only non-negative

values.

def make_max_finder():

"""

>>> m = make_max_finder()

>>> m([5, 6, 7])

7

>>> m([1, 2, 3])

7

>>> m([9])

9

>>> m2 = make_max_finder()

>>> m2([1])

1

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Mutability, ADTs,Trees, Iterators/Generators 11

4.4 Check your understanding:

x = 5

def f(x):

def g(s):

def h(h):

nonlocal x

x = x + h

return x

nonlocal x

x = x + x

return h

print(x)

return g

t = f(7)(8)(9)

a. What is t after the code is executed?

b. In the h frame, which x is being referenced? Which frame?

c. In the g frame, is a new variable x being created?

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



12 Mutability, ADTs,Trees, Iterators/Generators

5 Iterators and Generators
Questions

5.1 What is the definition of an iterable? What is the definition of an iterator? What

is the definition of a generator? What built-in functions or keywords are associated

with each. Give an example of each.

5.2 Evaluate if each line is valid? If not, state the error and how you would fix it.

>>> new_list = [2, 3, 6, 8, 8, 3]

>>> next(new_list)

>>> iter(new_list)[1]

>>> [x for x in iter(new_list)]

>>> for i in range(len(iter(new_list))):

... new_list.append(2)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Mutability, ADTs,Trees, Iterators/Generators 13

5.3 What is the difference between these two statements?

a. def infinity1(start):

while True:

start = start + 1

return start

b. def infinity2(start):

while True:

start = start + 1

yield start

What would python display?

>>> infinity1

>>> infinity2

>>> infinity1(2)

>>> infinity2(2)

>>> x = infinity1(2)

>>> next(x)

>>> y = infinity2(2)

>>> next(y)

>>> next(y)

>>> next(infinity2(2))

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



14 Mutability, ADTs,Trees, Iterators/Generators

5.4 They can’t stop all of us!!! Write a function generate constant which, a generator

function that repeatedly yields the same value forever.

def generate_constant(x):

"""A generator function that repeats the same value x forever.

>>> area = generate_constant(51)

>>> next(area)

51

>>> next(area)

51

>>> sum([next(area) for _ in range(100)])

5100

"""

5.5 4.2 Now implement black hole , a generator that yields items in seq until one of

them matches trap, in which case that value should be repeated yielded forever.

You may assume that generate constant works. You may not index into or slice

seq.

def black_hole(seq, trap):

"""A generator that yields items in SEQ until one of them matches TRAP, in which case that

value should be repeatedly yielded forever.

>>> trapped = black_hole([1, 2, 3], 2)

>>> [next(trapped) for _ in range(6)]

[1, 2, 2, 2, 2, 2]

>>> list(black_hole(range(5), 7))

[0, 1, 2, 3, 4]

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Mutability, ADTs,Trees, Iterators/Generators 15

5.6 What Would Python Display?

>>> def weird_gen(x):

... if x % 2 == 0:

... yield x * 2

>>> wg = weird_gen(2)

>>> next(wg)

>>> next(weird_gen(2))

>>> next(wg)

>>> def greeter(x):

... while x % 2 != 0:

... print('hi')

... yield x

... print('bye')

>>> greeter(5)

>>> gen = greeter(5)

>>> g = next(gen)

>>> g = (g, next(gen))

>>> g

>>> next(gen)

>>> next(g)

An iterator ______________________ a generator

A generator is a(n) ______________________ iterator

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



16 Mutability, ADTs,Trees, Iterators/Generators

5.7 Write a generator function gen inf that returns a generator which yields all the

numbers in the provided list one by one in an infinite loop.

>>> t = gen_inf([3, 4, 5])

>>> next(t)

3

>>> next(t)

4

>>> next(t)

5

>>> next(t)

3

>>> next(t)

4

def gen_inf(lst):

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Mutability, ADTs,Trees, Iterators/Generators 17

5.8 Implement a generator function called filter(iterable, fn) that only yields ele-

ments of iterable for which fn returns True.

def naturals():

i = 1

while True:

yield i

i += 1

def filter(iterable, fn):

"""

>>> is_even = lambda x: x % 2 == 0

>>> list(filter(range(5), is_even))

[0 , 2 , 4]

>>> all_odd = (2*y-1 for y in range (5))

>>> list(filter(all_odd, is_even))

[]

>>> s = filter(naturals(), is_even)

>>> next(s)

2

>>> next(s)

4

"""

5.9 What could you use a generator for that you could not use a standard iterator

paired with a function for?

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



18 Mutability, ADTs,Trees, Iterators/Generators

5.10 Define tree sequence, a generator that iterates through a tree by first yielding the

root value and then yielding the values from each branch.

def tree_sequence(t):

"""

>>> t = tree(1, [tree(2, [tree(5)]), tree(3, [tree(4)])])

>>> print(list(tree_sequence(t)))

[1, 2, 5, 3, 4]

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Mutability, ADTs,Trees, Iterators/Generators 19

5.11 Write a function make digit getter that, given a positive integer n, returns a

new function that returns the digits in the integer one by one, starting from the

rightmost digit.

Once all digits have been removed, subsequent calls to the function should return

the sum of all the digits in the original integer.

def make_digit_getter(n):

""" Returns a function that returns the next digit in n

each time it is called, and the total value of all the integers

once all the digits have been returned.

>>> year = 8102

>>> get_year_digit = make_digit_getter(year)

>>> for _ in range(4):

... print(get_year_digit())

2

0

1

8

>>> get_year_digit()

11

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



20 Mutability, ADTs,Trees, Iterators/Generators

5.12 Sorry another environment diagram, but it’s the last one I promise.

def iter(iterable):

def iterator(msg):

nonlocal iterable

if msg == 'next':

next = iterable[0]

iterable = iterable[1:]

return next

elif msg == 'stop':

raise StopIteration

return iterator

def next(iterator):

return iterator('next')

def stop(iterator):

iterator('stop')

lst = [1, 2, 3]

iterator = iter(lst)

elem = next(iterator)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.


	Mutability
	Data Abstraction
	Trees
	Nonlocal
	Iterators and Generators

