
CS 61A Linked Lists, OOP
Spring 2020 Guerrilla Section : March 13, 2020

1 Linked Lists
Questions

1.1 What is a linked list? Why do we consider it a naturally recursive structure?

1.2 Draw a box and pointer diagram for the following:

Link('c', Link(Link(6, Link(1, Link('a'))), Link('s')))

1.3 The Link class can represent lists with cycles. That is, a list may contain itself as a

sublist. Implement has cycle that returns whether its argument, a Link instance,

contains a cycle. There are two ways to do this: iteratively with two pointers, or

keeping track of Link objects we’ve seen already. Try to come up with both!

def has_cycle(link):

"""

>>> s = Link(1, Link(2, Link(3)))

>>> s.rest.rest.rest = s

>>> has_cycle(s)

True

"""

1.4 Fill in the following function, which checks to see if sub link, a particular sequence

of items in one linked list, can be found in another linked list (the items have to be

in order, but not necessarily consecutive).

def seq_in_link(link, sub_link):

"""

>>> lnk1 = Link(1, Link(2, Link(3, Link(4))))

>>> lnk2 = Link(1, Link(3))

>>> lnk3 = Link(4, Link(3, Link(2, Link(1))))

>>> seq_in_link(lnk1, lnk2)

True

>>> seq_in_link(lnk1, lnk3)

False



2 Linked Lists, OOP

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Linked Lists, OOP 3

2 OOP
Questions

2.1 What is the relationship between a class and an ADT?

2.2 What is the definition of a Class? What is the definition of an Instance?

2.3 What is a Class Attribute? What is an Instance Attribute?

2.4 What Would Python Display?

class Foo():

x = 'bam'

def __init__(self, x):

self.x = x

def baz(self):

return self.x

class Bar(Foo):

x = 'boom'

def __init__(self, x):

Foo.__init__(self, 'er' + x)

def baz(self):

return Bar.x + Foo.baz(self)

foo = Foo('boo')

Foo.x

foo.x

foo.baz()

Foo.baz()

Foo.baz(foo)

bar = Bar('ang')

Bar.x

bar.x

bar.baz()

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



4 Linked Lists, OOP

2.5 What Would Python Display?

class Student:

def __init__(self, subjects):

self.current_units = 16

self.subjects_to_take = subjects

self.subjects_learned = {}

self.partner = None

def learn(self, subject, units):

print('I just learned about ' + subject)

self.subjects_learned[subject] = units

self.current_units -= units

def make_friends(self):

if len(self.subjects_to_take) > 3:

print('Whoa! I need more help!')

self.partner = Student(self.subjects_to_take[1:])

else:

print("I'm on my own now!")

self.partner = None

def take_course(self):

course = self.subjects_to_take.pop()

self.learn(course, 4)

if self.partner:

print('I need to switch this up!')

self.partner = self.partner.partner

if not self.partner:

print('I have failed to make a friend :(')

tim = Student(['Chem1A', 'Bio1B', 'CS61A', 'CS70', 'CogSci1'])

tim.make_friends()

print(tim.subjects_to_take)

tim.partner.make_friends()

tim.take_course()

tim.partner.take_course()

tim.take_course()

tim.make_friends()

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Linked Lists, OOP 5

2.6 Fill in the implementation for the Cat and Kitten classes. When a cat meows,

it should say ”Meow, (name) is hungry” if it is hungry, and ”Meow, my name is

(name)” if not. Kittens do the same thing as cats, except they say ”i’m baby”

instead of ”meow”, and they say ”I want mama (parent’s name)” after every call

to meow().

>>>cat = Cat('Tuna')

>>>kitten = kitten('Fish', cat)

>>>cat.meow()

meow, Tuna is hungry

>>>kitten.meow()

i'm baby, Fish is hungry

I want mama Tuna

>>>cat.eat()

meow

>>>cat.meow()

meow, my name is Tuna

>>>kitten.eat()

i'm baby

>>>kitten.meow()

meow, my name is Fish

I want mama Tuna

class Cat():

noise = 'meow'

def __init__(self, name):

def meow(self):

def eat(self):

print(self.noise)

self.hungry = False

class Kitten(Cat):

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.


	Linked Lists
	OOP

