
CS 61A Tail Recursion, Interpreters, Macros
Spring 2020 Guerrilla Section 4: November 16, 2019

1 Tail Recursion
1.1 For the following procedures, determine whether or not they are tail recursive. If

they are not, write why not and rewrite the function to be tail recursive on the

right.

; Multiplies x by y

(define (mult x y)

(if (= 0 y)

0

(+ x (mult x (- y 1)))))

; Always evaluates to true

; assume n is positive

(define (true1 n)

(if (= n 0)

#t

(and #t (true1 (- n 1)))))

; Always evaluates to true

; assume n is positive

(define (true2 n)

(if (= n 0)

#t

(or (true2 (- n 1)) #f)))

; Returns true if x is in lst

(define (contains lst x)

(cond

((null? lst) #f)

((equal? (car lst) x) #t)

((contains (cdr lst) x) #t)

(else #f)))



2 Tail Recursion, Interpreters, Macros

1.2 Tail recursively implement sum-satisfied-k which, given an input list lst, a pred-

icate procedure f which takes in one argument, and an integer k, will return the

sum of the first k elements that satisfy f. If there are not k such elements, return

0.

; Doctests

scm> (define lst `(1 2 3 4 5 6))

scm> (sum-satisfied-k lst even? 2) ; 2 + 4

6

scm> (sum-satisfied-k lst (lambda (x) (= 0 (modulo x 3))) 10)

0

scm> (sum-satisfied-k lst (lambda (x) #t) 0)

0

(define (sum-satisfied-k lst f k)

)

1.3 Tail-recursively implement remove-range which, given one input list lst, and two

nonnegative integers i and j, returns a new list containing the elements of lst except

the ones from index i to index j. You may assume j > i, and j is less than the length

of the list. (Hint: you may want to use the built-in append function)

; Doctests

scm> (append '(1 2) '(3 4) '(5 6))

(1 2 3 4 5 6)

scm> (remove-range '(0 1 2 3 4) 1 3)

(0 4)

(define (remove-range lst i j)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Tail Recursion, Interpreters, Macros 3

)

Check your understanding

• Why aren’t all subexpression evaluations tail-recursive? For instance, why

isn’t the evaluation of (+ 4 5) as part of evaluating (+ 1 (+ 2 3) (+ 4 5))

tail recursive, even though it’s the last expression in the summation?

• Given a function (f lst) that acts over a list that has a single recursive call

of the form (f (cdr lst)), what would be a general approach for rewriting

it tail-recursively?

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



4 Tail Recursion, Interpreters, Macros

2 Interpreters
2.1 Determine the number of calls to scheme eval and the number of calls to scheme apply

for the following expressions. Use the visualizer at code.cs61a.org if you’re not

sure how an expression is evaluated.

> (+ 1 2)

3

> (if 1 (+ 2 3) (/ 1 0))

5

> (or #f (and (+ 1 2) 'apple) (- 5 2))

apple

> (define (add x y) (+ x y))

add

> (add (- 5 3) (or 0 2))

2

Check your understanding

• When a Scheme interpreter evaluates a combination of the form (a b c d e),

when does it evaluate a? Does it do so when a evaluates to a user-defined

function? What about a builtin procedure? What if it is a keyword for a

special form?

• What happens when we redefine a builtin procedure, like #[+]? For instance,

if we run (define + -), and then (+ 1 2), what do we get? What about if

we overwrite a keyword corresponding to a special form?

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

code.cs61a.org


Tail Recursion, Interpreters, Macros 5

3 Macros
3.1 What will Scheme display? If you think it errors, write Error

> (define-macro (doierror) (/ 1 0))

> (doierror)

> (define x 5)

>(define-macro (evaller y) (list (list 'lambda '(x) 'x) y))

> (evaller 2)

3.2 Consider a new special form, when, that has the following structure:

(when <condition> <expr1> <expr2> <expr3> ... )

If the condition is not false (a truthy expression), all the subsequent operands are

evaluated in order and the value of the last expression is returned. Otherwise, the

entire when expression evaluates to okay.

scm> (when (= 1 0)(/1 0) 'error)

okay

scm> (when (= 1 1) (print 6) (print 1) 'a)

6

1

a

Create this new special form using a macro. Recall that putting a dot before the

last formal parameter allows you to pass any number of arguments to a procedure,

a list of which will be bound to the parameter, similar to (*args) in Python.

; implement when without using quasiquotes

(define-macro (when condition . exprs)

(list 'if __________________________________________________________________________________)

; implement when using quasiquotes

(define-macro (when condition . exprs)

`(if __________________________________________________________________________________)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.


	Tail Recursion
	Interpreters
	Macros

