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1. (10 points) Exeggcute (All are in Scope: WWPD, HOFs, Lambda)

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. The output may have multiple lines. If an error occurs, write “Error”, but
include all output displayed before the error. If a function value is displayed, write “Function”.

The first two rows have been provided as examples.

Recall: The interactive interpreter displays the value of a successfully evaluated expression, unless it is None.

Assume that you have started python3 and executed the following statements:

equals = lambda a, b: a == b
nemo = lambda n: lambda: print(n)
ray = nemo(1)

def if_function(f, g, h):
if h:

f()
elif h:

f(f())
else:

print(5 or 6)
g()

def dory():
print('fish')
return lambda: 1/0

Expression Interactive Output
pow(2, 3) 8

print(4, 5) + 1
4 5
Error

equals(3==4, equals(5, equals(5, 5)))

print(print(print(2)), print(3))

print(nemo(print(5))())

if_function(nemo(3), dory, 2)

if_function(dory, nemo(2), ray())



Name: 3

2. (8 points) Goldeen State (All are in Scope: Environment Diagrams, HOFs, Lambda)

Fill in the environment diagram that results from executing the code below until the entire program is finished,
an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names and parent annotations to all local frames.

• Add all missing values created or referenced during execution.

• Show the return value for each local frame.

Global frame splashdef splash(klay, curry): 
  while curry == 3: 
    steph = klay 
    klay = lambda klay: steph(curry + 1) 
    curry = curry + 2 
    return klay 
  return curry // 5 

steph = lambda klay: splash(11, curry)-3 
steph, curry = splash(steph, 3), 30 
steph(4)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11

func splash(klay, curry) [parent=Global]

f1: ___________ [parent=____________]

Return Value

f2: ___________ [parent=____________]

Return Value

f3: ___________ [parent=____________]

Return Value

f4: ___________ [parent=____________]

Return Value
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3. (9 points) Countizard

(a) (6 pt) (All are in Scope: HOFs, Control) Implement counter, which takes a non-negative single-digit
integer d. It returns a function count that takes a non-negative integer n and returns the number of times
that d appears as a digit in n. You may not use recursive calls or any features of Python not yet covered in
the course.

def counter(d):
"""Return a function of N that returns the number of times D appears in N.

>>> counter(8)(8018)
2
>>> counter(0)(2016)
1
>>> counter(0)(0)
0
"""
def count(________________________________________________________________):

k = 0

while _________________________________________________________________:

_____________, last = _____________________________________, n % 10

if ________________________________________________________________:

_______________________________________________________________

_______________________________________________________________________

___________________________________________________________________________

(b) (3 pt) (All are in Scope: Recursion) Implement significant, which takes positive integers n and k. It
returns the k most significant digits of n as an integer. These are the first k digits of n, starting from the
left. If n has fewer than k digits, it returns n. You may not use round, int, str, or any functions from the
math module. You may use pow, which raises its first argument to the power of its second: pow(9, 2) is 81
and pow(9, 0.5) is 3.0.

def significant(n, k):
"""Return the K most significant digits of N.

>>> significant(12345, 3)
123
>>> significant(12345, 7)
12345
"""
if ________________________________________________________________________:

return n

return significant(___________________________, ___________________________)



Name: 5

4. (6 points) Caterepeat

(a) (4 pt) (All are in Scope: HOFs, Control) Implement repeat_sum, which takes a one-argument function f,
a value x, and a non-negative integer n. It returns the sum of n+1 terms. Each term, indexed by k starting
at 0, is the result of applying f to x repeatedly k times. You may assign to only one name in each of the
three assignment statements. You may not use recursive calls or any features of Python not yet covered in
the course.

def repeat_sum(f, x, n):
"""Compute the following summation of N+1 terms, where the last term
calls F N times: x + f(x) + f(f(x)) + f(f(f(x))) + ... + f(f(...f(x)))

>>> repeat_sum(lambda x: x*x, 3, 0) # 3
3
>>> repeat_sum(lambda x: x*x, 3, 1) # 3 + 9
12
>>> repeat_sum(lambda x: x+2, 3, 4) # 3 + 5 + 7 + 9 + 11
35
"""
total, k = 0, 0

while _____________________________________________________________________:

_______________ = _____________________________________________________

_______________ = _____________________________________________________

_______________ = _____________________________________________________

return total

(b) (2 pt) (All are in Scope: Lambda) Implement sum_squares, which takes a non-negative integer n and
uses repeat_sum to return the sum of the squares of the first n positive integers. Assume repeat_sum
is implemented correctly. You may use pow, which raises its first argument to the power of its second:
pow(9, 2) is 81 and pow(9, 0.5) is 3.0.

def sum_squares(n):
"""Return the sum of the first N perfect squares.

>>> sum_squares(0)
0
>>> sum_squares(3) # 1**2 + 2**2 + 3**2
14
>>> sum_squares(5) # 1**2 + 2**2 + 3**2 + 4**2 + 5**2
55
"""

f = ________________________________________________________________________

return repeat_sum(f, 0, n)
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5. (7 points) Multikarp

Terminology. An order 1 numeric function is a function that takes a number and returns a number. An
order 2 numeric function is a function that takes a number and returns an order 1 numeric function. Likewise,
an order n numeric function is a function that takes a number and returns an order n− 1 numeric function.

The argument sequence of a nested call expression is the sequence of all arguments in all subexpressions, in the
order they appear. For example, the expression f(3)(4)(5)(6)(7) has the argument sequence 3, 4, 5, 6, 7.

(a) (4 pt) (All are in Scope: Lambda, Self-Reference) Implement multiadder, which takes a positive integer n
and returns an order n numeric function that sums an argument sequence of length n.

def multiadder(n):
"""Return a function that takes N arguments, one at a time, and adds them.

>>> f = multiadder(3)
>>> f(5)(6)(7) # 5 + 6 + 7
18
>>> multiadder(1)(5)
5
>>> multiadder(2)(5)(6) # 5 + 6
11
>>> multiadder(4)(5)(6)(7)(8) # 5 + 6 + 7 + 8
26
"""

assert n > 0

if ________________________________________________________________________:

return ________________________________________________________________

else:

return ________________________________________________________________

(b) (3 pt) (All are in Scope: HOFs) Complete the expression below by writing one integer in each blank so
that the whole expression evaluates to 2016. The compose1 function appears on your midterm 1 study guide
in the middle of the left column of page 2. Assume multiadder is implemented correctly.

compose1(multiadder(_______)(1000), multiadder(_______)(10)(_______))(1)(2)(3)


