
CS 61A Structure and Interpretation of Computer Programs
Spring 2018 Final

INSTRUCTIONS

• You have 3 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except three hand-written 8.5" × 11"
crib sheet of your own creation and the official CS 61A midterm 1, midterm 2, and final study guides.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.

Last name

First name

Student ID number

CalCentral email (_@berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.
(please sign)

POLICIES & CLARIFICATIONS

• If you need to use the restroom, bring your phone and exam to the front of the room.

• You may use built-in Python functions that do not require import, such as min, max, pow, len, and abs.

• You may not use example functions defined on your study guides unless clearly specified by the question.

• For fill-in-the blank coding problems, we will only grade work written in the provided blanks. You may only
write one Python statement per blank line, and it must be indented to the level that the blank is indented.

• Unless otherwise specified, you are allowed to reference functions defined in previous parts of the same question.

• You may use the Tree, Link, and BTree classes defined on Page 2 (left column) of the Midterm 2 Study Guide.

http://berkeley.edu


2

1. (12 points) The Floss (All are in Scope: OOP, WWPD, Lambda, Python Lists, Mutation)

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. The output may have multiple lines. The first row is completed for you.

• If an error occurs, write Error, but include all output displayed before the error.

• To display a function value, write Function.

• To display an iterator value, write Iterator.

• If an expression would take forever to evaluate, write Forever.

The interactive interpreter displays the contents of the repr string of the value of a successfully evaluated
expression, unless it is None.

Assume that you have started python3 and executed the code shown on the left first, then you evaluate each
expression on the right in the order shown. Expressions evaluated by the interpreter have a cumulative effect.

class Forth:
next = 1

def __init__(self, k):
self.k = k

def __repr__(self):
return str(self.k) + '*'

def go(self, k):
if k == 1:

print(self)
if k:

return self.next.go(k-1)
print(self)

class Back(Forth):
@property
def next(self):

return self

g = [Forth(n) for n in range(3, 8)]
for i in range(4):

g[i].next = g[i+1]
g[3] = Back(2)

m = map(lambda o: o.k, g)

Expression Output
g[0] 3*

[next(m), next(m)]

next(next(iter([[0]])))

len([map(print, g)])

g[0].go(2)

g[0].go(4)

[x.next for x in g[3:]]



Name: 3

2. (8 points) Announcements (All are in Scope: Lambda, Python Lists, Mutation, Nonlocal, HOFs)

def ann(case):
def the(s):

nonlocal case
case = s[:]

it = list(ounce)
it.extend(case.pop())
if it is not the(case):

return lambda t: [2]+s+[t]
else:

return lambda u: [2]+s+[u]
ounce, ments = [2, [0, 1]], 8
s = ounce[1]
ann(ounce)(ments)

Fill in the environment diagram that results from ex-
ecuting the code on the left until the entire program
is finished, an error occurs, or all frames are filled.
You may not need to use all of the spaces or frames.
A complete answer will:

• Add all missing names and parent annotations
to all local frames.

• Add all missing values created or referenced
during execution.

• Show the return value for each local frame.

• Use box-and-pointer diagrams for lists
and tuples.

Global ann

f1: ___________ [parent=____________]

Return Value

f2: ___________ [parent=____________]

Return Value

f3: ___________ [parent=____________]

Return Value

Globalann

func ann(case) [parent=Global]



4

3. (7 points) Binary Trees (All are in Scope: Tree Class, Recursion)

Definition. A binary search tree is a BTree instance for which the label of each node is larger than all labels
in its left branch and smaller than all labels in its right branch.

(a) (5 pt) Implement largest, which takes a binary search tree t and a number x. It returns the largest label
in t that is smaller than x. If no such label exists, it returns 0. Assume that t contains only positive
numbers as labels. The BTree class is on page 2 (bottom of left column) of the Midterm 2 Study Guide.

def largest(t, x):
"""Return the largest label in t that is less than x, or 0 if none exists.

>>> a = BTree(5, BTree(3, BTree(1), BTree(3.5)), BTree(8, BTree(5.5), BTree(9)))
>>> largest(a, 5)
3.5
>>> largest(a, 5.1)
5
>>> largest(a, 6)
5.5
>>> largest(a.right, 5)
0
"""
if t is BTree.empty:

return 0

elif ____________________________________________________________________________________:

return largest(__________________________________, __________________________________)

y = largest(_____________________________________, ______________________________________)

if y:

return ______________________________________________________________________________

return __________________________________________________________________________________

(b) (2 pt) Implement second, which takes a binary search tree t containing only positive numbers, and a
number x. It returns the second largest label in t that is smaller than x.

def second(t, x):
"""Return the second largest label in t that is less than x, or 0 if none exists.

>>> a = BTree(5, BTree(3, BTree(1), BTree(3.5)), BTree(8, BTree(5.5), BTree(9)))
>>> second(a, 5)
3
>>> second(a, 5.1)
3.5
>>> second(a.left, 2)
0
"""
return _____________________________________________________________________



Name: 5

4. (10 points) Apply Yourself

(a) (6 pt) (All are in Scope: HOFs, Generators, Recursion) Implement times, which takes a one-argument
function f and a starting value x. It returns a function g that takes a value y and returns the minimum
number of times that f must be called on x to return y. Assume that calling f repeatedly on x eventually
results in y.

def times(f, x):
"""Return a function g(y) that returns the number of f's in f(f(...(f(x)))) == y.

>>> times(lambda a: a + 2, 0)(10) # 5 times: 0 + 2 + 2 + 2 + 2 + 2 == 10
5
>>> times(lambda a: a * a, 2)(256) # 3 times: square(square(square(2))) == 256
3
"""
def repeat(z):

"""Yield an infinite sequence of z, f(z), f(f(z)), f(f(f(z))), f(f(f(f(z)))), ...."""

yield ______________________________________________________________________________

____________________________________________________________________________________

def g(y):

n = 0

for w in repeat(___________________________________________________________________):

if _____________________________________________________________________________:

____________________________________________________________________________

________________________________________________________________________________

return g

(b) (2 pt) (At least one of these is out of Scope: Orders of Growth) Circle the Θ expression that describes
how many steps are required to evaluate f(f(n)), assuming f(n) returns 2n for all n, and Θ(n) steps are
required to evaluate f(n).

Θ(1) Θ(log n) Θ(
√
n) Θ(n) Θ(n2) Θ(2n) None of these

(c) (2 pt) (At least one of these is out of Scope: Orders of Growth) Circle the Θ expression that describes
how many steps are required to evaluate g(g(n)), assuming g(n) returns

√
n for all n, and Θ(n) steps are

required to evaluate g(n).

Θ(1) Θ(log n) Θ(
√
n) Θ(n) Θ(n2) Θ(2n) None of these



6

5. (12 points) Functions As Expected (All are in Scope: HOFs, Lambda, Python Lists, Recursion, Tree
Recursion)

Definition. For n > 1, an order n function takes one argument and returns an order n−1 function.
An order 1 function is any function that takes one argument.

(a) (6 pt) Implement scurry, which takes a function f and a positive integer n. f must be a function that
takes a list as its argument. scurry returns an order n function that, when called successively n times on a
sequence of values x1, x2, . . . xn, returns the result of calling f on a list containing x1, x2, . . . xn.

def scurry(f, n):
"""Return a function that calls f on a list of arguments after being called n times.

>>> scurry(sum, 4)(1)(1)(3)(2) # equivalent to sum([1, 1, 3, 2])
7
>>> scurry(len, 3)(7)([8])(-9) # equivalent to len([7, [8], -9])
3
"""
def h(k, args_so_far):

if k == 0:

return ________________________________________________________________________

return ____________________________________________________________________________

return ________________________________________________________________________________

(b) (6 pt) Implement factorize, which takes two integers n and k, both larger than 1. It returns the number
of ways that n can be expressed as a product of non-decreasing integers greater than or equal to k.

def factorize(n, k=2):
"""Return the number of ways to factorize positive integer n.

>>> factorize(7) # 7
1
>>> factorize(12) # 2*2*3, 2*6, 3*4, 12
4
>>> factorize(36) # 2*2*3*3, 2*2*9, 2*3*6, 2*18, 3*3*4, 3*12, 4*9, 6*6, 36
9
"""
if _____________________________________________________________________________________:

return 1

elif ___________________________________________________________________________________:

return 0

elif ___________________________________________________________________________________:

return factorize(_________________________________, ________________________________)

return _________________________________________________________________________________



Name: 7

6. (16 points) Scheme Forever

(a) (4 pt) (At least one of these is out of Scope: Scheme, Tail Recursion) Implement fibs, which takes a positive
integer n and prints out the first n Fibonacci numbers in order, one on each line. For example, (fibs 7)
prints 0 on one line, 1 on the next, then 1, 2, 3, 5, and 8; seven lines in total. Your implementation must
run in constant space to receive full credit.

(define (fibs n)
; Print the first n Fibonacci numbers. Each one is the sum of the previous two.
; (fibs 7) prints the Fibonacci numbers 0 1 1 2 3 5 8 each on a different line.

(define (taipei a b k)

(if (= k n)

(print __________________________________________________________________________)

_________________________________________________________________________________))

(taipei 1 0 1))

(b) (4 pt) (At least one of these is out of Scope: Scheme Streams) Write the first 7 elements of each stream
that results from the two calls to e below. Note: In Scheme, quotient performs floor division like // in
Python, and remainder is like % in Python.

(define (e n d) (cons-stream (quotient n d) (e (* 10 (remainder n d)) d)))

(e 1 8) ; Starts with: ______ ______ ______ ______ ______ ______ ______

(e 2 3) ; Starts with: ______ ______ ______ ______ ______ ______ ______

(c) (4 pt) (At least one of these is out of Scope: Scheme Macros) Implement lambda-macro, a macro that creates
anonymous macros. A lambda-macro expression has a list of formal parameters and one body expression.
It creates a macro with those formal parameters and that body. Assume that the symbol anon is not use
anywhere else in a program that contains lambda-macro.

(define-macro (lambda-macro bindings body)
; A lambda-macro expression evaluates to a macro.
; For example: ((lambda-macro (expr) (car expr)) (+ 1 2)) evaluates to the symbol +

`(begin (_______________________ ___________________________ __________________________)

anon))

(d) (4 pt) (At least one of these is out of Scope: Scheme Malformed List) Implement dotted?, which takes a
value s. It returns whether s is a dotted list or contains a dotted list anywhere within it.



8

(define (dotted? s)
; Return whether s contains a dotted list.
; Examples that are dotted: (1 2 . 3) , (1 (2 . 3)) , (((1 . 2)) 3)
; Examples that are not dotted: (1 2 3) , (1 2.3) , ((1) ((2)) 3)

(cond (( ___________________________________ ( ___________________________________ s)) #f)

((not-pair-or-nil? ___________________________________________________________ ) #t)

(else ___________________________________________________________________________)))

(define (not-pair-or-nil? s) (and (not (pair? s)) (not (null? s))))



Name: 9

7. (10 points) Gotta Select ’Em All (All are in Scope: SQL, SQL Aggregation)

For the questions below, assume that the following two SQL statements have been executed. The pokedex
table describes the names of some Pokémon and their heights in inches. The evolve table describes how those
Pokémon can evolve into the other Pokémon in the pokedex.

CREATE TABLE pokedex AS
SELECT "Eevee" AS name, 12 as height UNION
SELECT "Jolteon" , 31 UNION
SELECT "Leafeon" , 39 UNION
SELECT "Bulbasaur" , 28 UNION
SELECT "Ivysaur" , 39 UNION
SELECT "Venasaur" , 79 UNION
SELECT "Charmander" , 24 UNION
SELECT "Charmeleon" , 43 UNION
SELECT "Charizard" , 67;

CREATE TABLE evolve AS
SELECT "Eevee" AS before, "Jolteon" AS after UNION
SELECT "Eevee" , "Leafeon" UNION
SELECT "Bulbasaur" , "Ivysaur" UNION
SELECT "Ivysaur" , "Venasaur" UNION
SELECT "Charmander" , "Charmeleon" UNION
SELECT "Charmeleon" , "Charizard";

(a) (4 pt) Write a SQL statement that adds a new row to the evolve table for each pair of Pokémon for which
before evolves to after in two steps. For example, Charmander can evolve twice: first to Charmeleon
and then to Charizard. Therefore, ("Charmander", "Charizard") should be added as a row. Likewise,
("Bulbasaur", "Venasaur") should also be added. Your statement should behave correctly even if the
rows in evolve and pokedex were different. The rows can be added in any order.

_____________________________________________________________________________________

SELECT ______________________________________________________________________________

FROM ________________________________________________________________________________

WHERE _______________________________________________________________________________

(b) (6 pt) Write a SELECT statement that results in a table with one row for each Pokémon that can evolve.
The table should have two columns: the first contains the name of the Pokémon that can evolve, and the
second contains the maximum increase in height that it can attained by evolving. For example, Eevee can
grow as much as 27 inches (when evolving to Leafeon), so the result should contain the row ("Eevee", 27).
Your statement should behave correctly even if the rows in evolve and pokedex were different. The result
should only consider ways of evolving that are described by a single row in the evolve table.

SELECT _______________________________________________________________________________

FROM _________________________________________________________________________________

WHERE ________________________________________________________________________________

______________________________________________________________________________________;


